Protein Releasing Kinetics of Bakers’ Yeast Cells by Ultrasound

نویسندگان

  • D. K. Apar
  • B. Özbek
چکیده

The protein releasing kinetics of Saccharomyces cerevisiae cells were investigated by using the ultrasonication method. The effects of acoustic power, duty cycle % of a sonicator, medium pH and cell concentration on protein release were examined. An attempt was also made to enhance cell disruption further by adding glass beads to the solution. An increase with protein release was observed with increasing acoustic power, duty cycle and glass beads loading %. The protein release was found almost independent of cell concentration and optimum pH was obtained as 7. The relationship between protein release and processing time at various process conditions were studied; and the data were fit to a first order kinetic expression. By using the kinetic data, energy calculations with respect to protein release % were made; and found that using high acoustic power is not feasible for disruption process. By increasing the duty cycle %, no significant energy alteration was observed to achieve the same protein release %. However, disruption time decreased considerably. The effect of ultrasonic energy which is a function of both acoustic power and duty cycle % on the kinetic coefficients was also investigated using an exponential expression based on Arrhenius equation; and the activation energy of protein release was found as 0.44 kJ L–1.

منابع مشابه

Improving the freeze tolerance of bakers' yeast by loading with trehalose.

We examined the freeze tolerance of bakers' yeast loaded with exogenous trehalose. Freeze-tolerant and freeze-sensitive compressed bakers' yeast samples were soaked at several temperatures in 0.5 M and 1 M trehalose and analyzed. The intracellular trehalose contents in both types of bakers' yeast increased with increasing soaking period. The initial trehalose-accumulation rate increased with in...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

THE CALCIUM BINDING SITES OF THE BAKERS' YEAST TRANSKETOLASE

The calcium binding sites of Bakers' Yeast Transketolase (TK) was elucidated by estimating the pKa values of the functional groups that bind to calcium. These pKa's were found to be 6.25 and 7.2 relating to the pKa's of the two immidazol moieties of histidine residues on the enzyme. The rate of the binding of calcium to the enzyme was obtained separately as a function of pH. Maximum values ...

متن کامل

Functional Similarities between the Protein O-Mannosyltransferases Pmt4 from Bakers' Yeast and Human POMT1*

Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heterome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008